Chemical Events during Enamel Maturation
نویسنده
چکیده
This review focuses on the process of enamel maturation, a series of events associated with slow, progressive growth in the width and thickness of apatitic crystals. This developmental step causes gradual physical hardening and transformation of soft, newly formed enamel into one of the most durable mineralized tissues produced biologically. Enamel is the secretory product of specialized epithelial cells, the ameloblasts, which make this covering on the crowns of teeth in two steps. First, they roughly "map out" the location and limits (overall thickness) of the entire extracellular layer as a protein-rich, acellular, and avascular matrix filled with thin, ribbon-like crystals of carbonated hydroxyapatite. These initial crystals are organized spatially into rod and interrod territories as they form, and rod crystals are lengthened by Tomes' processes in tandem with appositional movement of ameloblasts away from the dentin surface. Once the full thickness of enamel has been formed, ameloblasts initiate a series of repetitive morphological changes at the enamel surface in which tight junctions and deep membrane infoldings periodically appear (ruffle-ended), then disappear for short intervals (smooth-ended), from the apical ends of the cells. As this happens, the enamel covered by these cells changes rhythmically in net pH from mildly acidic (ruffle-ended) to near-physiologic (smooth-ended) as mineral crystals slowly expand into the "spaces" (volume) formerly occupied by matrix proteins and water. Matrix proteins are processed and degraded by proteinases throughout amelogenesis, but they undergo more rapid destruction once ameloblast modulation begins. Ruffle-ended ameloblasts appear to function primarily as a regulatory and transport epithelium for controlling the movement of calcium and other ions such as bicarbonate into enamel to maintain buffering capacity and driving forces optimized for surface crystal growth. The reason ruffle-ended ameloblasts become smooth-ended periodically is unknown, although this event seems to be crucial for sustaining long-term crystal growth.
منابع مشابه
Maturation and beyond: proteins in the developmental continuum from enamel epithelium to junctional epithelium
Enamel, covering the surface of teeth, is the hardest substance in mammals. It is designed to last a lifetime in spite of severe environmental challenges. Enamel is formed in a biomineralization process that is essentially divided into secretory and maturation stages. While the molecular events of enamel formation during the secretory stage have been elucidated to some extent, the mechanisms of...
متن کاملEnamel of primary teeth--morphological and chemical aspects.
Enamel is one of the most important structures of the tooth, both from a functional and esthetic point of view. Primary enamel carries registered information regarding metabolic and physiological events that occurred during the period around birth and the first year of life. Detailed knowledge of normal development and the structure of enamel is important for the assessment of mineralization de...
متن کاملEditorial: Enamel Research: Mechanisms and Characterization
The idea to compile the present collection of articles on the topic on dental enamel formation and maturation was born in the course of a discussion over a glass of wine during the 11th International Conference on the Chemistry and Biology of Mineralized Tissues (ICCBMT) in Lake Geneva, Wisconsin in November 2013. Both of us felt that several issues specific to the mineralization of enamel dese...
متن کاملCritical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation
Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early durin...
متن کاملDecreased mineral content in MMP-20 null mouse enamel is prominent during the maturation stage.
During enamel development, matrix metalloproteinase-20 (MMP-20, enamelysin) is expressed early during the secretory stage as the enamel thickens, and kallikrein-4 (KLK-4, EMSP1) is expressed later during the maturation stage as the enamel hardens. Thus, we investigated whether the physical properties of the secretory-/maturation-stage MMP-20 null enamel were significantly different from those o...
متن کامل